Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
MedComm ; 4(1), 2023.
Article in English | EuropePMC | ID: covidwho-2232654

ABSTRACT

The recent pandemic of variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) highlights the need for innovative anti‐SARS‐CoV‐2 approaches in addition to vaccines and antiviral therapeutics. Here, we demonstrate that a CRISPR‐Cas13‐based strategy against SARS‐CoV‐2 can effectively degrade viral RNA. First, we conducted a cytological infection experiment, screened CRISPR‐associated RNAs (crRNAs) targeting conserved regions of viruses, and used an in vitro system to validate functional crRNAs. Reprogrammed Cas13d effectors targeting NSP13, NSP14, and nucleocapsid transcripts achieved >99% silencing efficiency in human cells which are infected with coronavirus 2, including the emerging variants in the last 2 years, B.1, B.1.1.7 (Alpha), D614G B.1.351 (Beta), and B.1.617 (Delta). Furthermore, we conducted bioinformatics data analysis. We collected the sequence information of COVID‐19 and its variants from China, and phylogenetic analysis revealed that these crRNA oligos could target almost 100% of the SARS‐CoV family, including the emerging new variant, Omicron. The reprogrammed Cas13d exhibited high specificity, efficiency, and rapid deployment properties;therefore, it is promising for antiviral drug development. This system could possibly be used to protect against unexpected SARS‐CoV‐2 variants carrying multiple mutations. Cas13d‐crRNAs inhibit both ancestral and mutated SARS‐CoV‐2 replication. Cas13d‐crRNAs inhibit both ancestral and mutated SARS‐CoV‐2 replication including Delta. Cas13d‐crRNAs could inhibit Omicron and other SARS family strains and are a potential pan‐SARS inhibition strategy.

2.
MedComm (2020) ; 4(1): e208, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2232655

ABSTRACT

The recent pandemic of variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for innovative anti-SARS-CoV-2 approaches in addition to vaccines and antiviral therapeutics. Here, we demonstrate that a CRISPR-Cas13-based strategy against SARS-CoV-2 can effectively degrade viral RNA. First, we conducted a cytological infection experiment, screened CRISPR-associated RNAs (crRNAs) targeting conserved regions of viruses, and used an in vitro system to validate functional crRNAs. Reprogrammed Cas13d effectors targeting NSP13, NSP14, and nucleocapsid transcripts achieved >99% silencing efficiency in human cells which are infected with coronavirus 2, including the emerging variants in the last 2 years, B.1, B.1.1.7 (Alpha), D614G B.1.351 (Beta), and B.1.617 (Delta). Furthermore, we conducted bioinformatics data analysis. We collected the sequence information of COVID-19 and its variants from China, and phylogenetic analysis revealed that these crRNA oligos could target almost 100% of the SARS-CoV family, including the emerging new variant, Omicron. The reprogrammed Cas13d exhibited high specificity, efficiency, and rapid deployment properties; therefore, it is promising for antiviral drug development. This system could possibly be used to protect against unexpected SARS-CoV-2 variants carrying multiple mutations.

3.
BMC Cancer ; 21(1): 1148, 2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1833290

ABSTRACT

BACKGROUND: Studies have shown that the skeletal muscle index at the third lumbar vertebra (L3 SMI) had reasonable specificity and sensitivity in nutritional assessment and prognostic prediction in digestive system cancers, but its performance in lung cancer needs further investigation. METHODS: A retrospective study was performed on 110 patients with advanced lung cancer. The L3 SMI, the Patient-Generated Subjective Global Assessment score (PG-SGA score), body mass index (BMI), and serological indicators were analyzed. According to PG-SGA scores, patients were divided into severe malnutrition (≥9 points), mild to moderate malnutrition (≥3 points and ≤ 8 points), and no malnutrition (≤2 points) groups. Pearson correlation and logistic regression analysis were adopted to find factors related to malnutrition, and a forest plot was drawn. The receiver operating characteristic (ROC) curve was performed to compare the diagnostic values of malnutrition among factors, which were expressed by the area under curve (AUC). RESULTS: 1. The age of patients in the severe malnutrition group, the mild to moderate malnutrition group, and the no malnutrition group significantly differed, with mean ages of 63.46 ± 10.01 years, 60.42 ± 8.76 years, and 55.03 ± 10.40 years, respectively (OR = 1.062, 95%CI: 1.008 ~ 1.118, P = 0.024; OR = 1.100, 95%CI: 1.034 ~ 1.170, P = 0.002). Furthermore, the neutrophil to lymphocyte ratio (NLR) of the severe malnutrition group was significantly higher than that of the no malnutrition group, with statistical significance. The difference between the mild to moderate malnutrition group and the no malnutrition group were not statistically significant, with NLR of 4.07 ± 3.34 and 2.47 ± 0.92, respectively (OR = 1.657,95%CI: 1.036 ~ 2.649, P = 0.035). The L3 SMI of patients in the severe malnutrition and mild to moderate malnutrition groups were significantly lower than that of the patients in the no malnutrition group, with statistical significance. The L3 SMI of patients in the severe malnutrition group, mild to moderate malnutrition group, and no malnutrition group were 27.40 ± 4.25 cm2/m2, 38.19 ± 6.17 cm2/m2, and 47.96 ± 5.02 cm2/m2, respectively (OR = 0.600, 95%CI: 0.462 ~ 0.777, P < 0.001; OR = 0.431, 95%CI: 0.320 ~ 0.581, P < 0.001). 2. The Pearson correlation analysis showed that the PG-SGA score positively correlated with age (r = 0.296, P < 0.05) but negatively correlated with L3 SMI (r = - 0.857, P < 0.05). The L3 SMI was also negatively correlated with age (r = - 0.240, P < 0.05). 3. The multivariate analysis showed that the L3 SMI was an independent risk factor for malnutrition (OR = 0.446, 95%CI: 0.258 ~ 0.773, P = 0.004; OR = 0.289, 95%CI: 0.159 ~ 0.524, P < 0.001). CONCLUSION: 1. The differences in the L3 SMI was statistically significant among advanced lung cancer patients with different nutritional statuses. 2. In the nutritional assessment of patients with lung cancer, the L3 SMI was consistent with the PG-SGA. 3. The L3 SMI is an independent predictor of malnutrition in patients with advanced lung cancer.


Subject(s)
Lung Neoplasms/complications , Malnutrition/etiology , Muscle, Skeletal/physiology , Vertebral Body/physiology , Female , Humans , Male , Malnutrition/physiopathology , Middle Aged , Nutrition Assessment , Prognosis , Retrospective Studies , Risk Factors
4.
Phytochemistry ; 193: 112984, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1466835

ABSTRACT

Papain-like protease (PLpro) is a key enzyme encoded by SARS-CoV-2 that is essential for viral replication and immune evasion. Significant suppression of viral spread and promotion of antiviral immunity can be achieved by inhibition of PLpro, revealing an inspiring strategy for COVID-19 treatment. This study aimed to discover PLpro inhibitors by investigating the national compound library of traditional Chinese medicines (NCLTCMs), a phytochemical library comprising over 9000 TCM-derived compounds. Through virtual screening and enzymatic evaluations, nine natural biflavones were confirmed to be effective PLpro inhibitors with IC50 values ranging from 9.5 to 43.2 µM. Pro-ISG15 cleavage assays further demonstrated that several biflavones exhibited potent inhibitory effects against PLpro-mediated deISGylation, a key process involved in viral immune evasion. Herein, we report the discovery, antiviral evaluation, structure-activity relationship elucidation and molecular docking investigation of biflavones as potent inhibitors of SARS-CoV-2 PLpro.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases , Humans , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2
5.
Pathog Dis ; 78(3)2020 04 01.
Article in English | MEDLINE | ID: covidwho-616784

ABSTRACT

The coronavirus disease 2019 (COVID-2019) that emerged in Wuhan, China, has rapidly spread to many countries across all six WHO regions. However, its pathobiology remains incompletely understood and many efforts are underway to study it worldwide. To clarify its pathogenesis to some extent, it will inevitably require lots of COVID-2019-associated pathological autopsies. Pathologists from all over the world have raised concerns with pathological autopsy relating to COVID-2019. The issue of whether a person died from COVID-2019 infection or not is always an ambiguous problem in some cases, and ongoing epidemiology from China may shed light on it. This review retrospectively summarizes the research status of pathological autopsy for COVID-2019 deaths in China, which will be important for the cause of death, prevention, control and clinical strategies of COVID-2019. Moreover, it points out several challenges at autopsy. We believe pathological studies from China enable to correlate clinical symptoms and pathological features of COVID-2019 for doctors and provide an insight into COVID-2019 disease.


Subject(s)
Autopsy , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Betacoronavirus , COVID-19 , Cause of Death , China , Coronavirus Infections/mortality , Humans , Pandemics , Pneumonia, Viral/mortality , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL